VerMI: Verification Tool for Masked Implementations
نویسندگان
چکیده
Masking is a widely used countermeasure against Side-Channel Attacks (SCA), but the implementation of these countermeasures is challenging. Experimental security evaluation requires special equipment, a considerable amount of time and extensive technical knowledge. So, to automate and to speed up this process, a formal verification can be performed to asses the security of a design. Multiple theoretical approaches and verification tools have been proposed in the literature. The majority of them are tailored for software implementations, not applicable to hardware since they do not take into account glitches. Existing hardware verification tools are limited either to combinational logic or to small designs due to the computational resources needed. In this work we present VerMI, a verification tool in the form of a logic simulator that checks the properties defined in Threshold Implementations to address the security of a hardware implementation for meaningful orders of security. The tool is designed so that any masking scheme can be evaluated. It accepts combinational and sequential logic and is able to analyze an entire cipher in short time. With the tool we have managed to spot a flaw in the round-based Keccak implementation by Gross et al., published in DSD 2017.
منابع مشابه
Formal Verification of Side-channel Countermeasures via Elementary Circuit Transformations
We describe a technique to formally verify the security of masked implementations against side-channel attacks, based on elementary circuit transforms. We describe two complementary approaches: a generic approach for the formal verification of any circuit, but for small attack orders only, and a specialized approach for the verification of specific circuits, but at any order. We also show how t...
متن کاملFormal Verification of Masked Hardware Implementations in the Presence of Glitches
Masking provides a high level of resistance against side-channel analysis. However, in practice there are many possible pitfalls when masking schemes are applied, and implementation flaws are easily overlooked. Over the recent years, the formal verification of masked software implementations has made substantial progress. In contrast to software implementations, hardware implementations are inh...
متن کاملAnBx: Automatic Generation and Verification of Security Protocols Implementations
The AnBx compiler is a tool for automatic generation of Java implementations of security protocols specified in a simple and abstract model that can be formally verified. In our model-driven development approach, protocols are described in AnBx , an extension of the Alice & Bob notation. Along with the synthesis of consistency checks, the tool analyses the security goals and produces annotation...
متن کاملProMoVer: A Tool for Modular Verification of Temporal Safety Properties
I will talk about ProMoVer, a tool for fully automated procedure-modular verification of Java programs equipped with method-local and global assertions that specify safety properties of sequences of method invocations. Modularity at the procedure-level is a natural instantiation of the modular verification paradigm, where correctness of global properties is relativized on the local properties o...
متن کاملProMoVer: Modular Verification of Temporal Safety Properties
This paper describes ProMoVer, a tool for fully automated procedure–modular verification of Java programs equipped with method– local and global assertions that specify safety properties of sequences of method invocations. Modularity at the procedure–level is a natural instantiation of the modular verification paradigm, where correctness of global properties is relativized on the local properti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017